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Received 8 December 1988 

Abstract. We investigate the differential cross section for a scattering system for which the 
existence of topological chaos in the phase space has already been shown in a previous 
paper. The most important result is the arrangement of an infinity of rainbow singularities 
into a fractal structure with a binary organisation. Its scaling behaviour is given by the 
eigenvalues of some periodic orbits. We discuss to what extent these results are typical 
for any chaotic scattering system. 

1. Introduction 

In recent years much work has been done on chaos in bound classical Hamiltonian 
systems. Meanwhile it is well known how chaos shows up in these systems, and 
powerful methods have been developed to investigate its behaviour. In contrast, the 
understanding of chaos in classical scattering systems is less complete. 

From the mathematical point of view it has been shown that topological chaos can 
exist on non-compact energy surfaces due to the interplay of homoclinic and hetero- 
clinic connections of unstable periodic bound orbits (Churchill et a1 1979). For nearly 
twenty years there have been numerical observations of complicated behaviour in 
classical models for inelastic molecular scattering (Rankin and Miller 1971, Gottdiener 
1975, Fitz and Brumer 1979, Agmon 1982, Schlier 1983, Noid er ai 1986, Skodje and 
Davis 1988). More recently, chaos has been found in satellite encounters (Petit and 
Henon 1986), vortex dynamics (Eckhardt 1988a, Eckhardt and Aref 1988), soliton 
scattering (Campbell et af 1986) and potential scattering (Eckhardt and Jung 1986, 
Jung and Scholz 1987, 1988, Troll and Smilansky 1988). (See also the review article 
by Eckhardt (1988b) and references therein.) 

In these systems the final asymptote has been observed as a function of the initial 
asymptote and it has been found to contain discontinuities on a fractal set. Accordingly, 
the best definition for scattering chaos, known so far, is the following. A scattering 
system is chaotic if the deflection function or any other convenient property of the 
final asymptote is discontinuous on a fractal subset of its domain, which is the set of 
all incoming asymptotes. In most of the work mentioned above the scattering cross 
sections have not been considered and it is not known whether they contain any specific 
effects coming from the topological chaos in the flow. In some of the molecular systems 
the probability for excitation or reaction has been studied. However, these are cross 
sections already integrated over the angles and possibly over some other final quantities. 
And, even if the differential cross section shows chaotic effects, they might have been 
averaged out during the integration. 
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We suggest that chaotic effects in  the cross section be identified first in the differential 
cross section. Therefore the purpose of the present paper is the following. In the 
differential cross section of a chaotic scattering system we look for structures which 
arise from the topological chaos in the flow. To keep things as simple as possible, we 
start with the simplest type of scattering system which can exhibit chaos at all, namely 
potential scattering in a two-dimensional position space. As an example we take the 
potential 

v (x ,y)  = e ~ p [ - ( x + J Z ) ~ - y ~ ] + e x p [ - ( x -  ~ / f i ) ’ - ( y + m ) ~  

+exp[-(x - 1 / f i ) ’ -  ( y  -&7Zl2] (1 )  

where x, y are the Cartesian coordinates in position space. In Jung and Scholz (1987, 
hereafter referred to as JS) it has been demonstrated that there is topological chaos in 
the flow of this system. In particular it has been shown that the deflection function, 
as a function of the impact parameter, shows discontinuities on a Cantor set, which 
is qualitatively the same as the standard f Cantor set. This particular type of fractal 
set allows for a simple binary signature for the intervals of continuity in between the 
points of the Cantor set itself. 

Accordingly, we build up the complete cross section as a sum over the contributions 
from these various open intervals. (Note: the Cantor set itself has measure zero. 
Therefore it does not contribute to the cross section.) The possibility for such a 
summation suggests the way in which the paper is organised. In 0 2 the contribution 
to the cross section from one particular interval of continuity of the deflection function 
is given. In P 3 we explain that all intervals give contributions of similar structure, the 
only essential difference being the exact angular position of the rainbow singularities. 
These singularities from all the various intervals are arranged in the form of a binarily 
organised fractal structure, which will be presented in more detail in 0 4. Section 5 
contains final remarks, and in particular a discussion as to what extent our results are 
typical for other chaotic scattering systems. 

2. One interval of continuity 

The straight line asymptotes of the system are labelled by the three quantities E, a, 6. 
E is the energy, in the asymptotic region E = ( p :  +p:)/2, where p x ,  pu are the momenta 
conjugate to x, y. a is the direction of the incoming momentum, a =tan-’ ( p y / p x ) .  b 
is the incoming impact parameter, b = (xp ,  -ypx)/( ~ : + p ~ ) ” ~ .  The scattering angle 0 
is the difference between the direction of the outgoing momentum and the direction 
of the incoming momentum. All angles are defined up to shifts by an integer multiple 
of 2.n. 

The computation of the cross section is done like this. We fix the energy E and 
the incoming direction a and take the scattering angle 0 as a function of the incoming 
impact parameter b. We determine all values b, of the impact parameter which lead 
to some particular scattering angle Bo, i.e. we look for all solutions of B(b) = Bo. For 
each solution b, the quantity (dB/db)(b,) is formed and the value of the cross section 
for the angle value Bo is summed up as 
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Because of this additivity we now look at the contribution coming from one interval 
of continuity and delay the summation over all intervals to the next section. 

Let us choose the values E = 0.6 and a = 7, as most of the plots in JS have been 
made for these values. In figure 1 we show the scattering angle as a function of the 
impact parameter. We observe a few b values at which 8 changes rapidly and we find 
intervals of continuity in between in which 8 is a smooth function. The two intervals 
of generation 1 are labelled by L and R in figure 1. Under magnification (shown in 
figures 3 and 4 in JS) new smaller intervals of continuity appear close to the boundaries 
of the intervals L and R. These gaps of generation 2 are denoted by sequences of two 
letters. The first letter is the same as the signature of the nearby gap of generation 1. 
The second letter becomes L or R according to whether the new interval lies to the 
left or right of the parent gap of generation 1. We continue this scheme by induction 
for those new intervals which appear close to the boundaries of the intervals of the 
previous generation under repeated magnification of the b axis (for more details see JS). 

n -  

W 
cn - 
s 
.F 0 -  
W 
+ * 
s w 

-n - 
-2 

I 
0 

Impact prometer 

v 

2 

Figure 1. Scattering angle as a function of impact parameter for energy E = 0.6 and incoming 
direction a = 7. 

In this section we choose the particular interval R which corresponds to b E ( b R - ,  
bR+)  = (0.341 06. . . , 0.497 33 . . .). This interval gives the most important contribution 
for angle values close to 8 = 57/3.  In figure 1 the behaviour close to the boundaries 
of the interval R is not well resolved. Therefore figure 2 shows the deflection function 
of the interval R again, this time as a function of the logarithmically transformed 
impact parameter: 

(3) B = h[( b - b ~ - ) / (  bR+ - b)]/ln p 

where p is the eigenvalue of the oscillating periodic orbit y on the saddles of the 
potential (in JS a plot of this orbit is shown in figure 7 ( a ) ) .  At energy E = 0.6 its value 
is close to 107. By transformation (3) the interval ( b R - ,  bR+)  is mapped one-to-one 
onto (-00, +a). For B + +cc the deflection function as a function of B can be fitted 



2928 C Jung and S Pot1 
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- 4  4 
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Figure 2. Scattering angle 0 as a function of the logarithmically transformed impact 
parameter B of ( 3 ) .  For comparison with figures 3 and 7 the relatibe extrema are labelled. 

quite well by the closed form expression 

B ( B ) + 5 . i r / 3 + O M [ l - c R +  exp(-B In p ) ]  sin(2.nB+pR+) ( 4 a )  

and in the same way for B+ -CC by 

where OM = 0.394 875 . . . . 
The approximate periodicity of e(  B) for B + *a can be understood as follows. If 

b is close to the boundary of the interval of continuity, then the position space trajectory 
performs oscillations on the saddle before it leaves the potential region. If the value 
of b comes closer to b,- or  b,+ by a factor p, then the position space trajectory spends 
one more period along y. Accordingly, the factor l / l n  p in ( 3 ) ,  together with the sine 
function in ( 4 ) ,  ensures that O ( B )  assumes the same value. For b values in between, 
all angle values are obtained which can be reached by trajectories leaving the periodic 
orbit y close to its unstable manifold. 

To understand the slight deviation from periodicity note that, when the scattering 
trajectory moves along y for some additional turns, more energy is put into the 
transverse motion, and the deviation of the angle value from its middle value 5 ~ / 3  
can become greater. In the extreme case of b +  b R *  the amplitude of the oscillations 
of the scattering angle converges to O M .  This approach of the oscillations to their 
maximal amplitude is adequately described by the factor [ 1 - cRi exp(FB In p ) ]  in 
( 4 ) .  The behaviour of e( B) close to B = 0 is determined by the particular shape of 
the potential and by the particular value of the energy, and we did not find any simple 
analytical fit for it. 

Figure 3 shows the contribution of the interval R to the cross section. Each relative 
extremum of B(b)  gives one rainbow singularity in the cross section. We have marked 
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Figure 3. Contribution of the interval R to the differential cross section. The logarithm 
of the cross section is plotted as a function of the logarithmically transformed scattering 
angle of ( 5 ) .  The rainbow singularities of the cross section are labelled to indicate the 
one-to-one correspondence between the rainbows and the extrema of the deflection function 
shown in figure 2. 

the extrema in figure 2 and the corresponding singularities in figure 3 by the same 
letters. In figure 3 we have chosen logarithmic scales on both axes in order to 
demonstrate the simple scaling properties of the system. The abscissa gives the 
transformed scattering angle: 

+ ( e )  = In[( e - 5 ~ / 3  + e,+, ) ( 5 ~ / 3  + e,,., - e)-’]/ln p. ( 5 )  

In these coordinates the angular distance between any rainbow and its successor (the 
one coming from the neighbouring extremum in figure 2) becomes 1 in the limit B + 00. 

Compare, e.g., the distance between p and n, or b and d, or m and 0, etc. Along the 
ordinate the quantity ln(dv/dO)/ln p is plotted. We notice that each branch is shifted 
vertically by approximately f, as compared with its successor. The reason is as follows. 
Close to a maximum of B(b) at b = b, with angle value e = en we approximate 
e(  b )  = 8, - A  ( b  - b,)*/2 and find 

lg ( b , )  1 = [A(  b - b,,)l= [ 2 (  8, - O)Al1’*. 

Close to the neighbouring maximum at b,+, with angle value O n + ,  we approximate 
O ( b ) = O , + , - A p *  ( b - b n + , ) * / 2  and find 

where, according to ( 3 )  and (4), the b, and e,, scale as bR+ - b, = p ( b R +  - b,, ,)  and 
5 ~ / 3 + 6 ~ - ~ , ~ p ( 5 ~ / 3 + e ~ - e , + , ) .  Let (Cl ,=(I / (~, , )and~,+,=I(I(~,+,)bethetrans-  
formed scattering angles at O n ,  O n + l .  We compare the cross section at two angle values 
$ and 6 which lie close to 4, and 4,,+1, respectively, such that 

( 7 )  *, - lj = *,+1 - lj << 1. 
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(2; and 6 correspond to the values e and e' of the original angle 0. Equation ( 5 )  and 
(7) imply 0, - e = p  (On+, - g). Inserting this into ( 6 a )  and ( 6 b )  leads to 

I,"," - I d0 
- (g) =p[2A(O,,, - [2Ap(On - e ) ] " ' = / ~ ~ ' ~  - ( ( e )  . 

Idb I 
Accordingly, for the ratio between the contributions to the cross section coming from 
the vicinities of the two maxima we obtain 

or 
d u  - d a  - 
d0 d0  

ln-(O)/lnp =ln-((B)/ lnp-& 

Analogous considerations hold for the minima. 
At the energy E = 0.6 the two extrema of O( b )  in the middle of the interval, labelled 

h and i in figure 2 ,  are not separated very much in their 0 values. This causes a 
corresponding double singularity in the cross section which comes close to a cubic 
rainbow. It forms the most prominent structure in the cross section. 

3. Contributions from all intervals 

The next step is to demonstrate that all intervals of continuity give similar contributions 
to the cross section. This can be done as follows. We take an interval of continuity 
of the impact parameter line (at fixed incoming angle) and transport it by the flow 
through the potential until it reaches the region of outgoing asymptotes. There we 
make a plot of the values of the scattering angle 0 and the outgoing angular momentum 
L (which is equivalent to the outgoing impact parameter). Thereby any interval of 
continuity of the incoming impact parameter line is mapped onto a continuous curve 
in the OIL plane. Figure 4 shows the results for the three intervals R, LL, LR. All 
other intervals that lead to 0 values around 57r/3, give spiral lines which run alongside 
these three lines in qualitatively the same manner. The only difference between these 
various spirals is a shift of the middle structure which produces the almost cubic 
rainbow structure in the cross section. The outer boundary line of the spirals is the 
intersection between the asymptotic 0/ L plane and the branch of the unstable manifold 
W" of y, which leaves the potential directly (compare figure 6 in JS). The image of 
any b interval of continuity spirals towards this boundary line in such a way that, for 
each complete turn, the distance from the boundary decreases by a factor p. If a 
position space trajectory makes one more turn along y, then it lies closer to the unstable 
manifold W" by a factor p. Spirals from different intervals are not allowed to intersect 
each other. Therefore, all spirals must converge to the boundary line by the same rate. 
This universal scaling behaviour for all intervals originates from the fact that the 
boundary points of the various intervals considered here lie on the stable manifold of 
the same periodic saddle trajectory. 

In this sense the scaling behaviour of all intervals is the same as the one described 
in 5 2 for the interval R, and the structure of the analytical fit of (4) holds for any 
interval. For the various'intervals we only have to insert other boundary values b+ ,  
b- for the impact parameter transformation in ( 3 )  and other constants c+, c-, c p + ,  cp- 
in (4). As an example, in figures 5 and 6 we show the deflection function of the 
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Figure 4. Intersection of the trajectories coming from intervals R, LL, L R  with the 
asymptotic plane of scattering angle 0 and angular momentum L. 

- 4  

Transformed impact parameter 

Figure 5. Scattering angle 0 as a function of the logarithmically transformed impact 
parameter in the interval LL. 

intervals LL and LR in the corresponding transformed coordinates, where bLL- = 

In order to show the convergence of the spirals to the boundary line and the scaling 
behaviour in better resolution, we show parts of the spirals from figure 4 again in 
figure 7, this time on a logarithmic scale. The exact transformation of the coordinates 
is this. In the 8 / L  plane we introduce polar coordinates ( r ,  cp) with the origin at 
8=5rr /3 ,  L=O. The boundary line of W" is given by a closed curve r = f ( c p ) ,  
cp E ( 0 , 2 ~ ] .  The map from the old coordinates ( r ,  cp) to new polar coordinates ( R ,  0) 

-0.513 5 5 . .  . , bLL+=-0.502 8 0 . .  . , bLR-=-0.33831.. . , bLR+=-0.321 22..  . . 
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5.1 , 

Transformed impact parometer 

Figure 6. Scattering angle 0 as a function of the logarithmically transformed impact 
parameter in the interval LR. 

1 -  

Y 

-1- 

-0.L 
X 

Figure 7. The same as figure 4 in logarithmically transformed coordinates to (8). 

is given by 

+ 

@ ( r ,  cp) = cp (80)  

R(r ,  cp) = f ( c p )  tanh-'(rlf(cc))lln P. ( 8 b )  
The new polar coordinates are converted into new Cartesian coordinates X, Y and 
plotted in figure 7. Some of the extremal values of the angle 6 along the spiral 
corresponding to the interval R are labelled by letters which match the letters of figures 
2 and 3. 

There is a natural one-to-one correspondence between the extremal angle values 
of interval R and the extremal angle values of the other intervals. Therefore, all 
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intervals create qualitatively the same rainbow structures in their contributions to the 
cross section. There are only two differences between the various contributions. First, 
the exact values of the rainbow angles are slightly shifted according to the shift of the 
spirals in figures 4 and 7. Second, the total weight of the contribution of any interval 
is proportional to its length, i.e. proportional to the amount of incoming flux which 
falls in this interval. 

Figure 8 presents the cross section of the combined contributions from the intervals 
R, LL, LR, this time as a function of the untransformed scattering angle 8. The three 
double singularities are labelled by the signatures of the corresponding intervals. 
Compare the position of these singularities with the position of the extrema1 angles 
in figures 4, 5 and 6. 

0 5  

c .- c z 
. .  2 e . .  v 

I 

Scattering angle 

-1.0 
4.8 1 

Figure 8. Contribution of the intervals R,  LL, LR to the cross section. The logarithm of 
the cross section is plotted as a function of the scattering angle. 

0.6 - 

c 
.- 
c 
h: 

; 
U 

-0.4 - 
0 6.20 

Scattering mgle 

Figure 9. The complete differential cross section of the potential for a = n and E = 0.6. 
The logarithm of the cross section is plotted as a function of the scattering angle. 
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Figure 9 gives the complete cross section of the system. This plot has been produced 
by another method than for figures 3 and 8. In figure 9 we have started 1600000 
trajectories, evenly distributed in the impact parameter interval (-4,4).  The scattering 
angle interval (0,27r) has been divided into 3600 boxes and hits of the outgoing 
asymptotes into the various boxes have been counted. Unfortunately, the resolution 
in figure 9 is not very high. Nevertheless it gives a good impression as to how the 
contributions from the various intervals of continuity are superimposed on the back- 
ground from scattering trajectories with large impact parameters (which do  not enter 
the potential interior). Contributions from impact parameter values close to b = 0 
create the fourfold singularity at angles 0 close to T. Compare the deflection function 
shown in figure 1. 

4. Fractal arrangement of rainbow singularities 

So far the most prominent features of the cross section contributions of the various 
intervals are the rainbow singularities, especially the nearly degenerate double sin- 
gularities coming from the middle parts of the impact parameter intervals. The angular 
position of these singularities is different for the various intervals. In this section we 
show that the angular arrangement of these rainbows defines a fractal set with binary 
organisation, reflecting the fractal structure of the hyperbolic invariant set in the phase 
space. To plot figure 10 we have done the following. All intervals with signature of 
length smaller than or equal to 10, and with trajectories going into the angle range 
around 57~ /3 ,  were selected out. For each of these intervals the angular position of 
the left side of the double singularity (corresponding to point h in figures 2, 3 and 7 
for interval R )  was taken as a characteristic angle and plotted on the angle axis. In  
the upper frame the various contributions are sorted according to the length of the 
signature of the corresponding interval of continuity. In the lower frame all contribu- 
tions are plotted along one line. For some contributions the corresponding signature 
is shown. Figure 11 is a magnification of a small angular section of figure 10, and 
figure 12 is a further magnification. 

The binary organisation of the arrangement is evident. Comparison of figures 10, 
11 and 12 shows that taking half of the plot and magnifying it is equivalent to shifting 
the whole structure upwards one step in the signature length. 

The number of intervals of continuity is countable as can be seen from the possibility 
to label all intervals in closed form by finite signatures. Therefore, the number of 
rainbow angle values is also countable. However, the set of accumulation points of 
these angle values forms an uncountable Cantor set. 

The position of the contributions of any interval in figure 10 can be fitted qualita- 
tively, in the limit of long signatures, by formula (9) given below. We explain it for 
the contributions which lie in the left half of the plot, i.e. for 0 values between 5.13 
and 5.17 (the right half, for 0 values between 5.27 and 5.31, can be given by a 
mirror-image construction). First, to any interval of generation n and signature sl . . . s, 
we assign a new symbol sequence a ,  . . . an- l  as follows. If s , - k + l  is different from 
S n - k ,  then ak = 1. If S n - k + l  is equal to s n - k ,  then ak = 0. The characteristic angle of 
the rainbow belonging to this interval is approximately given by 

where @ = 5.145 . . . , h = 0.015 . . . , vo = p - ‘ I 2  = 0.094 . . . , = A -113 - - -0.229. . . (for 
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Figure 10. Fractal pattern of rainbow angles. In the upper frame the contributions from 
the various intervals are shown as a function of the signature length of the corresponding 
interval (vertical axis) and the angular position (horizontal axis). In the lower frame the 
contributions from all signature lengths are plotted on one angular axis. The signatures 
of some intervals are indicated. 
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Figure 11. Magnification of figure 10. 

5.i 

the right half of the plot in figure 8 we would have to take p = 5.29 . . . , A = -0.015 . . .). 
Here p and A are the eigenvalues of the oscillating and the ring trajectory, respectively 
(compare 9 3 in JS).  

As the signature of intervals becomes longer and longer by accumulation of new 
digits in front, the corresponding position space trajectories come closer and closer to 
the unstable manifold of some localised orbit. In figures 4 and 7 the spirals correspond- 
ing to these intervals would converge to the spiral produced by the intersection of the 
asymptotic e / L  plane with this unstable manifold. In this way the fractal structure 
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seen in figure 10 is governed by the fractal structure of the bundle of unstable manifolds 
of the hyperbolic invariant set. 

The binary organisation of this fractal set is qualitatively the same (also the scaling 
factors F-” *  and A-’ ’3  are the same) as the organisation of the set of intervals of 
continuity along the axis of the incoming impact parameter. This is no accident. The 
fractal set along the b axis is given by the intersection of the stable manifolds of the 
localised orbits with the set of incoming asymptotes, and the stable and unstable 
manifolds are related via time reversal. 

In figures 10, 11 and 12 we have plotted the rainbow positions around 8 = 57r/3. 
Since the other saddles at 8 = 7r/3 and 8 = 7r have the same shape, we would have 
obtained the same plots for these other two angle ranges. 

The essential features of figures 10, 11 and 12 do not depend on our choice of 
rainbow h as a characteristic angle for each interval. Had we taken some other rainbow 
of interval R, and the corresponding rainbow of each other interval, then in the 
analytical fit in (9) the value of p would be shifted and the value of A might be 
significantly smaller. Nevertheless, the succession of the contributions from the various 
intervals would remain exactly the same and the plots in figures 10, 11 and 12 would 
look qualitatively the same. 

5. Discussion and conclusions 

We have identified a fractal arrangement of rainbow singularities in the classical cross 
section. The plots in Q 4 exhibit this structure for the particular choice of initial 
conditions LY = v and E = 0.6. What happens for other values of LY and E ?  

For other values of a no essential changes occur as long as the incoming stream 
of particles hits the stable manifolds of the hyperbolic invariant set (compare figure 
9 in JS). Of course, the position of the various intervals along the b axis would be 
shifted. However, if the signature of an interval is long enough, then the corresponding 
trajectories spend a long time inside the potential region and, in a sense, forget their 
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history. For the shape of the deflection function shown in figure 2 all that matters is 
how the particles leave the potential interior through one of the saddles. 

When the value of E is changed, eigenvalues p and A of the periodic orbits are 
also changed (compare $ 3 in JS),  and the scaling properties of the fractal sets change 
accordingly. The difference of the values of q+ and rp- in (4) is the same for all 
intervals, to a very high accuracy. However, the numerical values of q+ - cp- depend 
on E. Accordingly the shape of the deflection function in the middle of the intervals, 
where the asymptotic oscillations from both sides are fitted together, depends strongly 
on E. We find an  exact cubic rainbow at a critical energy E,=0.58.. . . We have a 
cubic rainbow at angle value B,, if there is an  impact parameter value b, such that 
6(b,) = 0, and (dB/db) (6,) = (d2B/db2)(b,) = 0. At E ,  the two extrema h and i of the 
deflection function in figure 2 coincide. For E < E ,  these two extrema disappear. For 
E increasing from E, the angular distance between these extrema increases monotoni- 
cally. The fractal sets described here exist as long as E lies between Es and EM 
(compare figure 8 in JS). 

To our knowledge, such a fractal pattern of rainbow singularities in the differential 
cross section has not yet been described for any other scattering system. The mechanism 
that produces this structure depends on the existence of homoclinic or heteroclinic 
intersections of the invariant manifolds of localised orbits. Therefore, we expect a 
fractal pattern of rainbows to occur for other chaotic scattering systems too. In all 
such systems the boundaries of the impact parameter intervals of continuity are formed 
by the intersection of the b axis with the stable manifolds of some localised orbits. If 
the initial impact parameter comes closer to a boundary point, the trajectory makes 
more and more revolutions along a periodic orbit, and the deflection function shows 
oscillations similar to those in figure 2 .  This leads to a corresponding sequence of 
rainbow singularities in the cross section. Of course, the scaling properties are given 
by the eigenvalues of the respective localised orbits. Because trajectories are not 
allowed to intersect in phase space, the images of the various intervals in the outgoing 
asymptotic plane corresponding to the curves shown in figures 4 and 7 must generally 
run in parallel, without intersections. Accordingly, the exact position of the rainbows 
will be slightly different for the various intervals. The accumulation locus of the various 
curves is given by the intersection of the B / L  plane with the unstable manifolds of the 
hyperbolic invariant set. Therefore, the angular distribution of the rainbows reflects 
the fractal arrangement of these unstable manifolds and we obtain a fractal pattern of 
rainbow singularities. 

In this sense, the qualitative properties which we have demonstrated for our 
particular system should be universal for any chaotic potential scattering system. The 
only important difference for other systems might be that there is no such simple binary 
signature for the fractal sets, both for the intervals of continuity along the b axis and  
for the rainbow distribution along the 0 axis. In other cases these fractal sets might 
be more complicated. However, because of time reversal invariance we expect again 
that both of these fractal sets are arranged in essentially the same way, just reflecting 
the symmetry between the stable and unstable manifolds of the hyperbolic invariant set. 
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